Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires

Identifieur interne : 004398 ( Main/Repository ); précédent : 004397; suivant : 004399

Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires

Auteurs : RBID : Pascal:10-0091162

Descripteurs français

English descriptors

Abstract

We report a study of the effect of the growth base pressure on the thermoelectric (TE) properties of indium antimonide (InSb) nanowires (NWs) synthesized using a vapour-liquid-solid method at different base pressures varying from ambient to high vacuum. A suspended device was used to characterize the TE properties of the NWs, which are zinc-blende structure with ?110? growth direction based on transmission electron microscopy (TEM) characterization of the same NWs assembled on the suspended device. The obtained Seebeck coefficient is negative, with the magnitude being smaller than the literature bulk values and increasing with decreasing growth base pressure. These results are attributed to the loss of In from the source materials due to oxidation by residual oxygen in the growth environment and the consequent formation of Sb-doped NWs. The electron mobility and lattice thermal conductivity in the NWs are lower than the corresponding bulk values because of both surface scattering and stronger dopant scattering in the Sb-doped NWs. Based on these findings, it is suggested that growth from In-rich source materials can be used to achieve composition stoichiometry in the NWs so as to increase the Seebeck coefficient and TE figure of merit.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0091162

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires</title>
<author>
<name>FENG ZHOU</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Materials Science and Engineering Program, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Moore, Arden L" uniqKey="Moore A">Arden L. Moore</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Pettes, Michael T" uniqKey="Pettes M">Michael T. Pettes</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name>YONG LEE</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name>JAE HUN SEOL</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name>QI LAURA YE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Center for Nanotechnology, NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Moffett Field, CA 94035</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rabenberg, Lew" uniqKey="Rabenberg L">Lew Rabenberg</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Materials Science and Engineering Program, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name>LI SHI</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Materials Science and Engineering Program, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0091162</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0091162 INIST</idno>
<idno type="RBID">Pascal:10-0091162</idno>
<idno type="wicri:Area/Main/Corpus">004A03</idno>
<idno type="wicri:Area/Main/Repository">004398</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blende structure</term>
<term>Electrical conductivity</term>
<term>Electron mobility</term>
<term>Figure of merit</term>
<term>Indium antimonides</term>
<term>Lattice thermal conductivity</term>
<term>Nanowires</term>
<term>Scanning electron microscopy</term>
<term>Seebeck effect</term>
<term>Stoichiometry</term>
<term>Surface scattering</term>
<term>Thermoelectric power</term>
<term>Transmission electron microscopy</term>
<term>VLS growth</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pouvoir thermoélectrique</term>
<term>Microscopie électronique transmission</term>
<term>Effet Seebeck</term>
<term>Conductivité électrique</term>
<term>Microscopie électronique balayage</term>
<term>Mobilité électron</term>
<term>Conductivité thermique réseau</term>
<term>Diffusion surface</term>
<term>Stoechiométrie</term>
<term>Facteur mérite</term>
<term>Méthode VLS</term>
<term>Diffraction RX</term>
<term>Antimoniure d'indium</term>
<term>Nanofil</term>
<term>Structure blende</term>
<term>InSb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report a study of the effect of the growth base pressure on the thermoelectric (TE) properties of indium antimonide (InSb) nanowires (NWs) synthesized using a vapour-liquid-solid method at different base pressures varying from ambient to high vacuum. A suspended device was used to characterize the TE properties of the NWs, which are zinc-blende structure with ?110? growth direction based on transmission electron microscopy (TEM) characterization of the same NWs assembled on the suspended device. The obtained Seebeck coefficient is negative, with the magnitude being smaller than the literature bulk values and increasing with decreasing growth base pressure. These results are attributed to the loss of In from the source materials due to oxidation by residual oxygen in the growth environment and the consequent formation of Sb-doped NWs. The electron mobility and lattice thermal conductivity in the NWs are lower than the corresponding bulk values because of both surface scattering and stronger dopant scattering in the Sb-doped NWs. Based on these findings, it is suggested that growth from In-rich source materials can be used to achieve composition stoichiometry in the NWs so as to increase the Seebeck coefficient and TE figure of merit.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FENG ZHOU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MOORE (Arden L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PETTES (Michael T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YONG LEE</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JAE HUN SEOL</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>QI LAURA YE</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>RABENBERG (Lew)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LI SHI</s1>
</fA11>
<fA14 i1="01">
<s1>Materials Science and Engineering Program, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Mechanical Engineering, University of Texas at Austin</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Center for Nanotechnology, NASA Ames Research Center</s1>
<s2>Moffett Field, CA 94035</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s2>025406.1-025406.9</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000189997310250</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>37 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0091162</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report a study of the effect of the growth base pressure on the thermoelectric (TE) properties of indium antimonide (InSb) nanowires (NWs) synthesized using a vapour-liquid-solid method at different base pressures varying from ambient to high vacuum. A suspended device was used to characterize the TE properties of the NWs, which are zinc-blende structure with ?110? growth direction based on transmission electron microscopy (TEM) characterization of the same NWs assembled on the suspended device. The obtained Seebeck coefficient is negative, with the magnitude being smaller than the literature bulk values and increasing with decreasing growth base pressure. These results are attributed to the loss of In from the source materials due to oxidation by residual oxygen in the growth environment and the consequent formation of Sb-doped NWs. The electron mobility and lattice thermal conductivity in the NWs are lower than the corresponding bulk values because of both surface scattering and stronger dopant scattering in the Sb-doped NWs. Based on these findings, it is suggested that growth from In-rich source materials can be used to achieve composition stoichiometry in the NWs so as to increase the Seebeck coefficient and TE figure of merit.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C63B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Pouvoir thermoélectrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thermoelectric power</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Effet Seebeck</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Seebeck effect</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Conductivité thermique réseau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Lattice thermal conductivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Conductividad térmica red</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Diffusion surface</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Surface scattering</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Stoechiométrie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Stoichiometry</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Facteur mérite</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Figure of merit</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Factor mérito</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Méthode VLS</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>VLS growth</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Método VLS</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>XRD</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Antimoniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Structure blende</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Blende structure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estructura blenda</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InSb</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>060</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004398 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004398 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0091162
   |texte=   Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024